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Abstract

We describe how structured illumination patterns can be
used to increase the resolution of an imaging system for
optical microscopy. A target is illuminated by a sequence
of finely textured light patterns formed by the interference
of multiple coherent beams. The sequence of brightness
values reported from a single pixel of a CCD imager en-
codes the target contrast pattern with sub-pixel resolu-
tion. Fourier domain components at spatial frequencies
contained in the probing illumination patterns can be re-
covered from the pixel brightness sequence by solving a
set of over-determined linear equations.

We show that uniform angular spacing of the beams
generating the illumination patterns leads to less than
ideal sampling of the transform space and we propose
alternative geometric arrangements. We describe an im-
age reconstruction algorithm based on the Voronoi di-
agram that applies when the transform domain is not
sampled uniformly. Finally, the contrast patterns within
individual pixels can be spliced together to form an image
encompassing multiple pixels.

1. Introduction
Optical imaging is a relatively fast and low-cost micro-
scopic visualization technique when compared with other
imaging modalities such as electron microscopy (EM)
and scanning probe microscopy (SPM). More impor-
tantly, optical imaging is non-destructive and does not re-
quire additional sample preparation or mechanical con-
tact between a probe and the target. However, the spatial
resolution of traditional optical miscroscopy is a limita-
tion when applied to nano-scale problems. Resolution
in optical imaging is fundamentally limited by the wave-
length of light [1]. The smallest feature that can be re-
solved by optical imaging (as defined by the Rayleigh cri-
terion [4]) is 0.61λ/NA where λ is the wavelength of light,
and NA is the numerical aperture of the objective lens.

The limiting resolution predicted by this formula im-
proves when the wavelength is reduced. However, scaling
an optical imaging system to short wavelengths of light
is a challenging problem. Few materials are suitable for

refractive elements at very short wavelengths. Commonly
used refractive materials become opaque at short wave-
lengths, while others exhibit birefringence.

One alternative is to use reflective elements instead of
refractive elements for image formation, since some com-
mon materials reflect light of even relatively short wave-
length satisfactorily. However, few examples of quality
imaging systems consisting entirely of reflective elements
exist. This may be in part because fewer degrees of free-
dom are available in designs using reflective elements (one
radius of curvature per element) when compared with re-
fractive elements (two radii of curvature plus choice of
refractive index per element).

We describe an optical imaging method that combines
high resolution textured illumination with a relatively low
resolution sensor system (as opposed to the usual “low
resolution’’ — or uniform — illumination combined with
high resolution sensing) as proposed by Mermelstein [9].
In the new system, a high resolution image of the tar-
get is generated computationally by processing a series of
low resolution images obtained by illuminating the target
with a sequence of finely textured patterns.

The resolution of such a system is limited by the resolu-
tion of the illumination pattern, and thus is still limited by
the wavelength of light. However, it is not limited by the
resolution of optical elements on the sensor side (such as
the NA of the objective, and the sensor pixel size). More
importantly, scaling to short wavelength of light becomes
much more practical since reflective optics can be used to
generate the structured illumination.

Low resolution imaging (when a low NA objective is
used) brings with it several additional advantages, such
as, increased working distance, wider field of view, and
larger depth of field. In a traditional system using a high
NA objective, high resolution is achieved at the cost of a
relatively small field of view, short working distance, and
small depth of field.

A practical situation where this approach is particu-
larly useful is that of fluorescence imaging, since in this
case the wavelength of the illumination is shorter than
that of the emitted light. As a result, reflective optics
may be used to produce the finely textured illumination
patterns, while the usual refractive optics may be used on
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Figure 1: Generation of structured illumination using the
interference of multiple coherent beams. (a) Schematic of the
imaging setup showing a lens, a CCD, and a cone of 31 coherent
beams illuminating the target. The target is placed where the
beams overlap, as illustrated in the right side. For clarity, only
three beams are shown. (b) Side view of the setup. The cone
half angle of the beams (θ2) and the cone half angle of the lens
(θ1) are indicated. (c) A view of the cone of beams looking from
the top.

the sensor side. Most importantly, the resolution of the
new method is limited by the wavelength of the illumina-
tion in contrast to the usual fluorescence imaging method
where resolution is limited by the (longer) wavelength of
the emitted radiation.

Structured illumination has been successfully used in
range and shape imaging [3] [8] and photographic scene
analysis [6]. Also, there have been recent successes in
using structured illumination to improve the resolution
of fluorescence microscopy [7] [5]. In that work, however,
the structured illumination is a simple periodic pattern
formed by the interference of two laser beams (or two
pairs of opposite beams). We instead use complex texture
patterns created by the interference of many laser beams
as practiced by Mermelstein [9]. A series of different
textured patterns are produced by varying the relative
phases and amplitudes of the set of beams.

In this paper, we present the framework of the method
and associated computational schemes. Physical appara-
tus to generate a controlled sequence of finely textured
structured illumination patterns will be described in a
separate paper. First we show how a sequence of struc-
tured illumination patterns can be used to encode tar-

get contrast information in a sequence of brightness val-
ues reported from a single pixel of a charge-coupled de-
vice (CCD). Next, computational methods to decode this
information, and to reconstruct an image of the target
within a small area are presented, together with a method
for combining images from multiple pixels. Finally, we
explore a method to enhance the quality of the recon-
structed image by modifying the angular placement of
the laser beams.

2. High Resolution Structured Illumina-
tion

High spatial resolution structured illumination patterns
are formed by the interference of multiple coherent
beams. Fig. 1a illustrates an optical imaging setup us-
ing a lens and a CCD in which illumination is provided
by a number of coherent beams that overlap in an area
where a target is placed. In the region of overlap, a light
pattern is formed as the result of interference between the
beams. It is this pattern that illuminates the target. The
right side of Fig. 1a shows a magnified view of the tar-
get region where beams overlap. Only three beams are
shown for clarity. The overlapping beams form a cone
in three-dimensional space. Fig. 1b is a side view of the
cone of beams, while Fig. 1c shows a view from the top
(i.e. from the direction of the lens and the CCD imager).

Suppose there are N coherent beams overlapping in
the target region. The electric field, E, of the n-th beam
as a function of position r and time t can be written as

En(r, t ) = an cos(kn · r − ωnt + φn)p̂n (1)

where an is the amplitude, kn the wavenumber1, ωn the
optical frequency, φn the optical phase, and p̂n the po-
larization vector. The intensity pattern formed by the
interference of N beams then is

I(r, t ) =
∣∣∣∣∣
N∑

n=1

En(r, t )

∣∣∣∣∣
2

. (2)

In the method presented here, the beams all ultimately
originate from the same source and so λn and ωn are the
same for all beams. In addition, the polarization vectors
p̂n of the beams are assumed to be equal2. Then the

1The wavenumber kn is (2π/λn)l̂n, where λn is the wave-
length and l̂n is a unit vector defining the direction of propa-
gation of the n-th beam. The vectors kn and p̂n are perpen-
dicular to one another.

2In fact, the polarization vectors of the beams cannot be
made exactly equal, but this is a good approximation if the
beams are TM (Transverse Magnetic) polarized and the cone
half angle of the beams (θ2) is close to 90o .
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Figure 2: (a) Computed structured illumination pattern in the
target plane formed by the cone of 31 beams shown in figure 1
(θ2 = 78o ). (b) Fourier transform magnitude of the pattern
in (a) showing a total of 931 bright spots corresponding to a
set of spatial frequency components contained in the intensity
pattern in (a).

average of I(r, t ) over one cycle can be written

I(r) = 1

2

N∑
l=1

N∑
m=1

alam cos(klm · r + φlm) (3)

where klm = kl − km and φlm = φl − φm, respectively.
Eq. (3) shows that the intensity pattern is a function of
position r and is completely characterized by the ampli-
tudes (an), the optical phases (φn), and the wavenumbers
(kn) of the beams. When the direction of propagation of
the beams are fixed in space by the physical arrangement
of the apparatus, then the intensity pattern I(r) becomes
a function of just the amplitudes and optical phases of
the beams. Consequently, the intensity pattern can be
changed by modulating these beam parameters. Fig. 2a
shows a computer simulated intensity pattern in the tar-
get plane formed by the interference of 31 beams as illus-
trated in Fig. 1. The cone half angle of the beams (θ2)
was chosen to be 78o in this illustration. In this particular
example, the amplitudes of all beams were set equal and
the optical phases of the beams were chosen randomly
between 0 and 2π with uniform distribution.

Eq. (3) shows that in the Fourier domain, the inten-
sity pattern I(r) is composed of a set of distinct spa-
tial frequency components klm, for l = 1, 2, · · · , N and
m = 1, 2, · · · , N . The total number of distinct frequency
components (p) is determined by the number of beams
(N ), and is p = N 2 −N + 1.3 The values of the spatial
frequencies themselves are determined by the differences
between the wavenumbers of all possible pairs of beams.
The highest spatial frequency is 2/(λ sin(θ2)). Fig. 2b

3When l = m in Eq. (3), the corresponding spatial fre-
quency klm becomes zero (DC), so N of the N 2 combinations
contribute to a single frequency component.

shows the Fourier transform magnitude of the intensity
pattern in Fig. 2a. It shows a total of 931 (i.e. 312−31+1)
bright spots corresponding to the spatial frequency com-
ponents of the pattern in Fig. 2a.

As will be shown in the following section, the resolu-
tion of the proposed system is determined by the spatial
frequency components contained in the structured illu-
mination. Since the highest spatial frequency component
(and hence the smallest feature size) of the illumination
pattern is controlled by the cone half angle of the beams
(θ2) at a given wavelength of light, the angle θ2 controls
the resolution of the system. For a traditional imaging
system in Fig. 1 with uniform illumination, the resolution
is instead controlled by the cone half angle of the objec-
tive lens (the angle θ1 in Fig. 1b, NA = sin(θ1)). The ratio
η = sin(θ2)/ sin(θ1) represents the increase in maximum
spatial frequency content present as the result of the use
of structured illumination.

In computer simulations that follow, the NA of the lens
in Fig. 1 was chosen to be 0.13 (therefore, θ1 = 7.5o ),
representing the lowest NA from a leading manufacturer
of microscope objectives. This lens selection aims at ad-
vantages in field of view, working distance, and depth of
field that a low NA lens offers. The cone half angle of the
beams (θ2) was selected to be 78o , representing the corre-
sponding value in the multiple beam interference pattern
projector we have designed and built. Notice that the
value η — representing the increase in maximum spatial
frequency content present due to structured illumination
— corresponds here to sin(78◦)/ sin(7.5◦) = 7.5.

Note that the three-dimensional brightness pattern
I(r) is constant in the z-direction if all the wavenumbers
kn have the same z-component. This happens when the
beams all come in at the same angle (π/2− θ2 in Fig. 1)
with respect to the target plane z = 0. The result is very
large depth of field (limited only by the low NA of the
objective lens). As a result we treat the target contrast as
an essentially two-dimensional pattern in the following
(i.e. a function of r in the target plane z = 0).

3. Encoding and Decoding Target Infor-
mation

Suppose that there are N beams and M distinct struc-
tured illumination patterns are projected in sequence by
controlling the amplitudes (an) and the optical phases
(φn) of the beams. Let Ij (r) represent the intensity of the
j -th illumination pattern as a function of position r. The
planar target is represented by a contrast value as a func-
tion of position, C(r).4 In a simulation we use the image

4Here, the position vector r is in target coordinates. For
convenience, the magnification of the imager can be treated
as if it were unity, in which case the position vector in the
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shown in Fig. 3a as the target contrast pattern. The light
pattern that falls on the CCD imager, gj (r), is given by

gj (r) = [C(r)Ij (r)] ∗ h(r) j = 1, 2, · · · ,M (4)

where h(r) represents the point spread function (PSF) of
the lens [4] and ∗ designates the convolution operation.

The CCD can be viewed as an array of light sensors
where each pixel corresponds to a single light sensor. The
brightness bj reported from a single pixel of the CCD
imager positioned at the origin (r = 0) of the coordinate
system becomes

bj =
∫

gj (r)p(r) dr j = 1, 2, · · · ,M (5)

where p(r) represents the response of the pixel, modelled
as a two dimensional rectangular function which is one
inside the area of the pixel and zero elsewhere. Substitut-
ing Eq. (4) into Eq. (5) and preforming some algebraic
manipulations leads to

bj =
∫
[w(r)C(r)]Ij (r) dr (6)

=
∫

Cw(r)Ij (r) dr j = 1, 2, · · · ,M (7)

where w(r) = h(r) ∗ p(r) is the two-dimensional convo-
lution of h(r) and p(r) (i.e. the combined PSF of the lens
and the CCD sensor element). In the following, w(r) will
be called the “window’’ function — it gives the reponse
of a picture cell to incident light as a function of position
relative to the center of that picture cell. A simulated
windowing function w(r) is shown in Fig. 3b. In Eq. 7,
Cw(r) = w(r)C(r) is the “windowed’’ target contrast
function. A sample Cw(r) shown in Fig. 3c corresponds
to C(r) and w(r) shown in parts (a) and (b).

Eq. (7) shows that, for a given sequence of textured
illumination patterns, the recorded sequence of bright-
ness values is a function of Cw(r). For a computer-
simulated sequence of 1400 illumination patterns5, and
the target shown in Fig. 3a, the resulting brightness se-
quence is shown in Fig. 3d. The sequence of illumination
patterns was generated by changing the optical phases of
the beams.6

The sequence of brightness values bj , j = 1, 2, · · · ,M ,
in Eq. (7) encodes information on the windowed target

target coordinates also designates the position in the image
coordinates.

5We picked M = 1400 patterns so as to yield an overdeter-
mined system of linear equations in the unknown components
at 931 frequencies.

6For each illumination pattern, 31 optical phases were cho-
sen randomly between 0 and 2π with uniform distribution.
In this simulation the amplitudes of the 31 beams were kept
equal.
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Figure 3: Encoding sub-pixel target contrast information in
a sequence of brightness values from a single pixel. (a) C(r);
a target contrast function. (b) w(r); a window function for a
pixel positioned at the origin (the center of the image). NA
= 0.13, pixel size = 2λ. The rectangle at the center shows
the actual size of the pixel relative to the window function.
(c) Cw(r) = C(r)w(r); a windowed target, (d) Simulated se-
quence of brightness values reported from a single pixel while
the target was illuminated by a sequence of M = 1400 different
structured illumination patterns.

contrast Cw(r) at spatial frequencies present in the se-
quence of illumination patterns Ij (r), j = 1, 2, · · · ,M .
This can be more clearly seen after replacing Ij (r) in
Eq. (7) by the expression in Eq. (3) and performing sev-
eral steps of algebraic manipulations to rewrite Eq. (7) as
the following matrix equation [9]:

b = Ax (8)

where the M × 1 column vector b = [b1, b2, · · · , bM ]T is
the measured brightness sequence, while thep×1 column
vector x equals

[xDC , x
c
12, x

s
12, x

c
13, x

s
13, · · · , xc

(N−1)N , xs
(N−1)N ]T

and represents a total of p = (N 2 − N + 1) Fourier
transform coefficients of the windowed target contrast
Cw(r) at spatial frequencies present in the illumination
pattern. Specifically,

xDC = (N/2)

∫
Cw(r) dr (9)

xc
lm =

∫
Cw(r) cos(klm · r) dr (10)
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xs
lm =

∫
Cw(r) sin(klm · r) dr (11)

The j -th row, Aj , of the M × p matrix A, is determined
by the amplitudes (an) and the optical phases (φn) of the
beams for the j -th illumination. Specifically, Aj equals

[1, α12,−β12, α13,−β13, · · · , α(N−1)N ,−β(N−1)N ]

with αlm = alam cos(φlm) and βlm = alam sin(φlm).
For M > p, Eq. (8) is an overdetermined linear sys-

tem. Using knowledge of the illumination (i.e. the matrix
A) and the measured brightness sequence (the vector b),
we can find x, the best approximation to the solution x
of Eq. (8) in the least squares sense, using

x = (ATA)−1AT b (12)

where (ATA)−1AT is the pseudoinverse of A.
Notice that the number of estimated Fourier transform

coefficients (p) increases quadratically with the number
of beams (N ). This means that when one uses a rela-
tively modest number of beams (e.g. 31), a large enough
number of Fourier transform coefficients (e.g. 931) of
the target contrast pattern can be estimated to enable the
reconstruction of an image of the target from the data7.

Notice also that the resolution (or equivalently the spa-
tial frequency content) of such an image is determined by
the illumination and is not directly limited by the factors
limiting resolution in a traditional imaging system, such
as the NA of the lens, and the CCD pixel size. Instead
of determining the resolution, the NA of the lens con-
trols the size of the window function w(r) and therefore
defines the area of the target that is represented by the
vector x in Eq. (8).

4. Image Reconstruction
If sufficiently many Fourier transform coefficients are ob-
tained using the method described in the previous sec-
tion, then an image of the windowed target can be re-
constructed. As is well known, an arbitrary function
can be reconstructed exactly from its Fourier transform.
The Fourier transform is a continuous function of fre-
quency. In contrast, here only a finite number of samples
of the Fourier transform of Cw(r) are obtained by solv-
ing Eq. (8). Furthermore, as is illustrated in Fig. 2b,
the distribution of these ‘Fourier sample points’ is highly
non-uniform. First of all, the sampling density varies
with frequency, being low at mid-frequencies and high at
both low and high frequencies. Secondly, in the low spa-
tial frequency region, while the sample points are densely

7As a rough rule of thumb, N beams provide about enough
information to reconstruct the N 2 brightness values in an N×
N array of sub-pixel cells.
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Figure 4: Calculating the weights to be given to samples in
Fourier space using the areas of the Voronoi polygons. (a) The
Voronoi diagram for the distribution of the Fourier sample
points in Fig. 2b. Only the first quadrant of the Fourier space
is shown for clarity (The point at the lower left corner corre-
sponds to DC). (b) Magnified view of a rectangular sub-region
in (a) indicating an example Fourier sample point (klm) and its
corresponding Voronoi polygon.

populated along the angular direction, they are sparsely
populated along the radial direction. The reverse is true
at high frequencies.

To compensate for sampling density non-uniformity
in Fourier space, each sample point in the Fourier space
is weighted inversely with the density of sample points
in its vicinity. This notion was implemented by first al-
locating non-overlapping space-filling elemental areas to
the sample-points. The density at a sample point is in-
versely proportional to the corresponding elemental area.
These areas in turn are defined by calculating the Voronoi
polygon for each sample point. The Voronoi polygon is
defined by drawing a boundary enclosing all points lying
closer to the sample point in question than to any other
sample point [2]. Fig. 4a shows the Voronoi diagram of
the sample points in Fig. 2b, which is the set of all Voronoi
polygons for all sample points. For clarity, only the first
quadrant of the Fourier space is shown. Fig. 4b is an
enlarged view of the sub-region of (a) indicated by a rect-
angle. Sample points are shown as dots, and borderlines
between adjacent Voronoi polygons are marked as lines.
Notice that the polygons are more elongated in regions
of low as well as at high frequencies.

The area of each Voronoi polygon was calculated and
used as a weighting factor for the corresponding sam-
ple point. An image of the estimated windowed target�Cw

(r) was then reconstructed by summing all weighted
frequency components as in Eq. (13).

�Cw
(r) = sDCx0 + 2

N−1∑
l=1

N∑
m=l+1

s(klm)χlm (13)
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Figure 5: (a) An image of the windowed target Cw(r) re-
constructed by processing the brightness sequence in Fig. 3d by
the method described in this paper. (b) The original windowed
target shown as a reference.

where sDC and s(klm) are the areas of the Voronoi poly-
gon corresponding to DC and the spatial frequency klm,
respectively and

χlm = xc
lm cos(klm · r)+ xs

lm sin(klm · r). (14)

The above reconstruction formula treats the measured en-
ergy contributions as being localized at a single frequency
but considers them as representative of the energy over
the corresponding Voronoi polygon.8

Fig. 5a shows an image reconstructed by processing the
pixel brightness sequence in Fig. 3d as described above.
The circled area in the image itself defines a region where
the window function in Fig. 3b is more than 50% of its
maximum value. The rectangular region inside the circle
is the area occupied by the pixel whose brightness mea-
surements were used in reconstructing this image. Part (b)
is the original windowed target shown as a reference. No-
tice that the reconstructed image within the circle in part
(a) is similar to the corresponding region in part (b) —
with some loss of sharpness. Fig. 5 clearly demonstrates
that, using a sequence of brightness measurements from
a single pixel, an image can be reconstructed with sub-
pixel detail within that pixel. In fact, as shown, an area
somewhat larger than the pixel can be reconstructed.

Two factors control the quality of the reconstructed
image. First, the wavelength λ of light and the cone half
angle of beams θ2 determines the maximum spatial fre-
quency (2π/(λ sin(θ2))) present in the illumination and
therefore controls the sharpness of the reconstructed im-
age. Second, the total number of beams (N ) determines
the number of Fourier sample points and therefore con-
trols the density of sampling in the Fourier domain. This
in turn determines how many more or less independent
sub-pixel samples can reasonably be expected to be re-
covered.

8We have measurements only at discrete unequally spaced
frequencies in the transform domain. We could assume as
an approximation that the transform was constant in each
Voronoi polygon. Instead we consider all the energy for that
polygon to be concentrated at a point.

25 images from 25 
physical pixels 

stitched together

Cw(r) for P0,-1

Cw(r) for P0,0

Figure 6: Combining images from multiple pixels (The
dropoff in brightness at the edges of the tiles is due to dropoff in
the windowing function — which not been compensated for).

5. Combining Multiple Pixels
In the previous section, it was shown that a (small) im-
age can be generated using data from a single pixel of a
CCD. When an array of pixels of a CCD are considered,
the situation is equivalent to multiple imagers working in
parallel — each looking at a slightly different area. Im-
ages generated from multiple pixels can be combined to
form a larger image.

Eq. (7) describes the brightness of a pixel positioned
at the origin of the coordinate system in terms of the
window function, w(r), the target contrast, C(r), and the
illumination, Ij (r). For a pixel whose center is positioned
at r = rc , the brightness of the pixel is now described by

bj =
∫
[w(r − rc)C(r)]Ij (r) dr (15)

where w(r − rc) is w(r) shifted in space by rc . The win-
dowing function shifted by the vector rc defines a sub-
region in the target space to which the output of a partic-
ular pixel in the CCD is responsive (and conversely, the
area in which a contrast function can be reconstructed
from the coded information obtained from the pixel).

In this paper, a simple method for combining images
from multiple pixels is presented. Fig. 6 illustrates this
procedure using two adjacent pixels, P0,−1 andP0,0. The
two images inside the left box of Fig. 6 represent the tar-
get constrast pattern multiplied by two different window
functions corresponding to the two chosen pixels. Pro-
cessing the data from each pixel is equivalent to perform-
ing Fourier analysis of the corresponding windowed tar-
get. The figure illustrates how the position of the window
corresponds to the positions of the pixels.

When processed, the data from each pixel generates an
image of a windowed portion of the target contrast. From

6
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Figure 7: A different beam placement with sinusoidally mod-
ulated spacings between adjacent beams (left) and the resulting
distribution of sample points in Fourier space — along with the
corresponding Voronoi diagram (right).

each such “sub- image,’’ a region corresponding to the
area of the pixel is cropped (for example, the rectangular
area defined in Fig. 5a). The two small images next to the
left box in Fig. 6 are sample cropped images. The result
of stitching the two small images together is shown on the
right. That image is the result of mosaicing a total of 25
small images generated from 25 individual pixels.

6. Optimizing Beam Placement
The distribution of Fourier sample points is determined
by the angular arrangement of the beams The distribu-
tion in Fig. 2b results from the beam placement shown in
Fig. 1c with uniform angular spacing of beams. In this
case, the sample points in Fourier space lie on the inter-
sections of a group of concentric circles and a group of
radial lines. The corresponding Voronoi diagram (Fig. 4)
shows that the Voronoi polygons in the low and high fre-
quency regions have very thin shapes (i.e. high aspect
ratio), which is an indication of sampling density non-
uniformity in those regions. The reason this is undesir-
able is that for fixed cell area, an elongated cell combines
frequency components that are further apart than does a
cell of a more “rounded’’ shape.

One can try and find a set of beam angles that provides
a more uniform distribution of sample points in Fourier
space. One can for example minimize some measure of
the elongation of the Voronoi polygons using numerical
optimization. Fig. 7 illustrates a particular example of
non-uniform beam spacing. The left part of Fig. 7 shows
beam placement (with the same 31 beams) in which the
angles between adjacent beams vary sinusoidally from
beam to beam — rather than all being the same. The right
part shows the resulting distribution of sample points in
Fourier space and the corresponding Voronoi diagram
— shown here in the first quadrant only. Compared to

uniform
beam spacing

(a)

modulated
beam spacing

(b)

2λ 2λ

Figure 8: Images of the target reconstructed from data ob-
tained (a) using uniform beam spacing, and (b) using modulated
beam spacing.

the uniform beam spacing case illustrated in Fig. 4a, the
resulting Voronoi polygons — while still showing consid-
erable variation in area — exhibit significantly reduced
aspect ratio, especially in the low and high spatial fre-
quency regions, indicating better sampling.

Fig. 8 compares images reconstructed using data
for the two different beam placements considered here.
Part (a) shows two images for the uniform beam spac-
ing case. The left side is an image reconstructed using
data from a single pixel located at the center, while the
right side is the result of combining images from 25 pixels.
Part (b) shows corresponding images for the modulated
beam spacing case. The effect of improving the distri-
bution of sample points in Fourier space is clear from
the reconstructed images. Modulated beam spacing pro-
duces images with lower energy background artifacts and
improved sharpness.

Finally, images of the same target acquired with dif-
ferent conditions are compared in Fig. 9. The image in
part (a) simulates an image acquired with a 0.13 NA lens,
using uniform illumination. Here the size of the pixel of
the CCD imager was assumed to be infinitesimally small.
Therefore, part (a) corresponds to the theoretical reso-
lution limit of the 0.13 NA lens. The image in part (b)
simulates the same condition as in part (a), but with finite
pixel size of 2λ. The two images in part (c) and part (d)
are the same as part (a) and part (b), but with a 0.98 NA
lens that has the same cone half angle as the cone half
angle of the beams (78o ). The image in part (e) was gen-
erated with a 0.13 NA lens and a finite pixel size (2λ), but
using a structured illumination sequence.

Several observations can be made here: First, the re-
sults in Fig. 9 clearly illustrate that the structured illumi-
nation technique overcomes the practical resolution limit
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Figure 9: Images of the same target acquired with different
conditions.

set by the finite pixel size of the CCD imager, generating
an image of the target with sub-pixel details. Second, the
resolution of the technique is comparable to the theoret-
ical resolution limit of a 0.98 NA lens — i.e. a lens with
the same cone half angle as the cone half angle of the co-
herent beams — although still limited by the wavelength
of light. An important factor, however, is that, unlike the
0.98 NA objective lens of the sensor, the illumination part
of the new system can be made entirely of reflective opti-
cal elements, which makes scaling to short wavelength of
light more practical. Finally, the method has advantages
in terms of the field of view, the working distance, and the
depth of field compared with a 0.98 NA lens, since these
parameter are here instead determined by the 0.13 NA
lens on the sensor side.

7. Conclusion
We described an optical microscopy method in which
high resolution illumination in the form of a sequence
of finely textured light patterns is combined with low res-
olution sensing. We showed that the sequence of bright-
ness values reported from a single pixel encodes the target
contrast pattern within (and near) that pixel. A computa-
tional scheme to process non-uniformly spaced samples
in Fourier space to produce a reconstructed image of the
target contrast within (and near) the pixel was presented.
The resolution of such a system is primarily limited by the

illumination system, not by the NA of the objective or the
size of the pixels, as in traditional microscopic imaging
methods. Since the physical apparatus to generate the
illumination can be made entirely of reflective optical el-
ements, the method holds potential for scaling optical
microscopy to very short wavelengths of light.

In future work, we plan to find “optimal’’ arrange-
ments of beam angles using numerical optimization tech-
nique. To do this, we will have to develop suitable opti-
mization criteria. Work on antenna placement in radio
astronomy may be relevant in this connection [10]. We
also plan to investigate improved methods for combin-
ing images from multiple pixels, especially noting that
windows for adjacent pixels overlap one another signifi-
cantly. The method described here is similar in concept
to the short-time Fourier transform (STFT) analysis and
synthesis technique in that Fourier analysis is performed
using overlapping windows that are shifted versions of
one another. Formulating the method as a variation of
STFT may provide new insights.
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